1.1 The Particle Model (H)	PhysicsAndMathsTutor.com
1. Water has a density of 1000 kg / m³.	
Water of volume 1 m³ is frozen. The volume of the ice formed is 1.09 m³.	
What is the density of the ice?	
Use the Equation Sheet.	
 A 0.917 kg / m³ B 1.09 kg / m³ C 917 kg / m³ D 1090 kg / m³ 	
Your answer	[1]
2. Which sentence about an atom is correct?	
 A Most of the mass is in the nucleus. B The nuclear radius is much larger than the rest of the atom. C The nucleus has a neutral charge. D The nucleus is surrounded by positively charged electrons. 	
Your answer	[1]
3. A medical freezer is used to keep vaccines cool.	
 When the vaccine is used by doctors, it has to be changed back into vaccine is first raised to its melting point but it remains as a solid. 	a liquid. The temperature of the
Explain two reasons why more energy is needed to change the soli point.	id vaccine into a liquid at its melting
1	

[2]

ii.	Calculate the number of 5 mg vaccine doses which can be melted using 6800 J of energy.	
	Assume the specific latent heat of fusion for the vaccines is 340 000 J / kg.	
	Use the Equation Sheet June 23 J249-01-02-03-04.	
	Number of vaccine doses =	[6]
4. Wh	at is the correct order of the three states of matter in increasing density?	
Α	$Gas \rightarrow liquid \rightarrow solid$	
В	$Liquid \to gas \to soli$	
С	Liquid → solid → gas	
D	Solid → liquid → gas	
Your	answer	[1]
5 . A s	cientist wants to publish a new theory.	
Which	step should the scientist take before publishing the theory?	
	Check the new theory with a friend.	
B C	Have the new theory peer reviewed. Keep the new theory secret to avoid others copying.	
D	Publish the new theory in a local magazine.	
_	,	
Your	answer	[1]

6(a).

Between 1908 and 1913, two scientists did experiments to help understand the structure of atoms.

The diagram shows how the scientists fired alpha particles at a thin piece of gold foil and detected what happened to these particles.

i.	The scientists detected that a very small number of particles reflected directly back, some particles were
	deflected, and most particles passed straight through the foil

[3]

ii. Explain why the previous model of the atom needed to change after this experiment.

______[1]

(b). A classroom contains air particles. A drawing of the classroom is shown in the diagram.

i. Calculate the volume of the classroom.

ii.	The density of air is 0.012 kg / m³.	
	Calculate the mass of air in the classroom.	

Use the equation: density = mass / volume

Mass =.....kg [3]

END OF QUESTION PAPER